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Abstract. We present a new infinite sequence of solvable lattice models. They contrast 
strikingly with the eight-vertex solid-on-solid models and admit extra degrees of freedom 
for the local fluctuation variables. The exact one-point functions are obtained. The result 
is neatly described in terms of theta-function identities. Using their modular invariance, 
critical behaviour is studied and exponents evaluated. 

1. Introduction 

The study of exactly solvable models in two dimenions has entered a new phase through 
the exact evaluation of the one-point functions and the appearance of the conformal 
field theory ( CFT). The restricted eight-vertex solid-on-solid (svsos) models of Andrews 
et a1 [ l ]  realise the anomalous dimensions of minimal CFT [2] through the critical 
exponents obtained from the one-point functions [3]. The results have been extended 
to more general SOS models in [4,5], yielding the anomalous dimensions of CFT having 
supersymmetries, Z N  invariance, etc. The analysis evolved in these works naturally 
leads to a correspondence principle between one-point functions of solvable lattice 
models and  irreducible decomposition of characters for affine Lie algebras. Moreover, 
the corresponding principle explains the phenomenologically observed coincidence of 
the exponents for the svsos models and minimal CFT. 

The purpose of this paper is to add further exact results on the one-point functions, 
which we call the local state probabilities (LSP). The LSP P ( A )  by definition gives the 
probability that a local state A ,  on the lattice site i takes a given state A. We introduce 
a series of new interaction-round-face models that contains those solved in [6] and  
study their critical behaviour through the exact evaluation of the LSP. Much the same 
as the RVSOS models, our models are labelled by an integer L (denoted by r in [ l]) .  
However, they manifest significant differences from each other in various aspects. 

The layout of the paper is as follows. In the next section we define our models 
and explain that the odd-L cases are identified with the models in [6]. The equivalence 
provides us with a solution of the star-triangle equations for general L. In § 3 we 
outline the calculation of the LSP for a regime of the parameters and  give the results. 
This section is based on Baxter’s corner transfer matrix method [7] and  the mathematical 
techniques developed in [ 5 ] .  In § 4, critical behaviour of the LSP is investigated and  
the exponents obtained. The last section is devoted to a summary and  discussion. 
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2. The models 

Consider a planar square lattice with a fluctuation variable A ,  associated with each 
site i. We shall call A ,  a state. Let L be an integer satisfying L z 3 .  We assume that 
each A,  takes the following ( L + 3 )  states: 

A , E { O , 0 ,  1 , 2 , .  . . , L - 1 ,  L, L}. ( 2 . 1 )  

We impose the conditions on the states that occupy the neighbouring lattice sites. 
These are best described by figure 1. In this diagram each vertex (open circle) stands 
for a local state A , .  Two states are allowed to occupy adjacent lattice sites if the 
corresponding vertices are connected on the diagram. We shall call such a pair of 
states admissible. Let A , ,  A,, A h  and A,  be the states such that four pairs ( A l ,  A,), (A,, A h ) ,  
( A k r  A!) and  ( A , ,  A , )  are admissible. We assign a Boltzmann weight w(A,,  A,, A k ,  A / )  for 
the state configuration ( A l ,  A,, A h ,  A , )  round a face, where the sites i ,  j ,  k and I of the 
face are ordered anticlockwise from the south-west corner. We assume the following 
properties for the Boltzmann weights. 

( i )  ‘Top-bottom’ symmetry: 

 AI, ’ $ 9  A k r  A f ) = w ( A T ,  A T ,  A T )  ( 2 . 2 a )  

where A *  is defined by 

A * = L - A  i f A  #o ,  L 
(0)* = L (L)* = 0. 

( 2 . 2 b )  

( i i )  ‘Replica’ symmetry: 

w ( A , ,  A/,  A k ,  A / )  = w(h89 11, h k ,  I/) 

h = A  
- - - - ( 2 . 3 b )  
(0) = 0 ( L ) = L  (0) = 0 ( L )  = L. 

( 2 . 3 a )  

where ,i is defined by 

if A # 0,0, L, L 

(iii) Diagonal exchange symmetry: 

“‘(A,, A,, A h ,  A I )  = w(A,,  A I ,  A h ,  A / )  

= w ( A h ,  A,, A!, A / ) *  ( 2 . 4 )  
Our model is an  interaction-round-face model [7] specified by these conditions on the 
state variables and the Boltzmann weights. We note that the L = 3 case is equivalent 
to odd-height sectors of the S O S  models in [ 4 , 5 ]  with ( L ,  N )  = ( 6 , 2 ) .  

L 0 

Figure 1. Diagram for our model. Each vertex (open circle) corresponds to a local state. 
Two states can occupy nearest-neighbour lattice sites i f  they are connected on the diagram. 
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a a ) ; g ; & 4 A k; ( --- 

P P 
Figure 2. Diagram for the model in [ 6 ] .  Each vertex (open circle) corresponds to a local 
state (called ‘spin’ in [ 6 ] ) .  Two states can occupy nearest-neighbour lattice sites if they 
are connected on the diagram. 

The solution of the star-triangle equations is obtained by using relations with the 
model solved in [6] which we shall now explain. Let us first assume that L is odd and 
set L = 2k - 1 ( k  2 2). We introduce a ‘spin’ variable U, that takes ( I C +  1)-spin states: 
U, E {0,1,2, .  . . , k - 2, a,  p } .  By figure 2 we define a map from the state variable A ,  to 
the spin variable U,. It shows the images of the A ,  in the corresponding positions on 
figure 1. 

This transforms the odd-L model to the ( k  + 1)-spin state model in [6] and hence 
gives us the solution of the star-triangle equations. Direct calculation shows that the 
solution obtained in this way is also valid in the L-even case. 

Here we shall use slightly different conventions from [6]. We replace the spectral 
parameter U and the elliptic nome q2 by -.nu/L and p, respectively, and employ the 
following definition of the Jacobian theta functions (cf (2.6), (2.9) and (2.10) in [6]): 

(2.5a) 

(2.5b) 

In the rest of this paper we deal exclusively with a regime specified by O<p < 1, 
-1 < U  < O  (regime 111 in the notation of [ l ,  51). 

3. Local state probabilities 

3.1. Expressions for the L S P  

Let (b, c )  be an admissible pair of the states and consider the alternatively ordered 
configuration thereof. We shall call such a configuration the ground state of type (b, c )  
(or equivalently of type (c, b))  (see figure 3). 

b r b r  

r b r b  

b r b r  

r b r b  

Figure 3. Ground state of type ( b ,  c )  on a two-dimensional square lattice. 



522 A Kuniha and T Yajima 

We consider the probability P(  a 1 b, c )  that a state variable A ,  takes a given state a 
under the condition that those far from site 1 are frozen to the ground state of type 
(b ,  c ) .  We now introduce parameters E and x through the relations: 

p = exp(-E/L) 

x = exp(-4rrz/ E )  ( O < x < l ) .  
( 3 . 1 )  

By the corner transfer matrix method the LSP P ( a  1 b, c )  is reduced to the m +CO limit 
of the quantity P,(a I b, c )  given below: 

P,(~~~,c)=E,LE(-x~,x~)X,(U, b, c ; x 2 ) / S , ( b , c )  ( 3 . 2 ~ )  

S,(b, c ) = C  E~;E(-x', x ~ ) X , ( Q ,  b, C ;  x') (3.2b) 
a 

( 3 . 2 ~ )  

Here the a sum in (3.2b) extends over all the states (2.1) with the assumption X" = x*. 
The outer sum ZA in ( 3 . 2 ~ )  is taken over the state variables A z , A 3 , .  . . , A ,  (A,=a,  
A m + ,  = b, A m + Z  = c )  under the restriction that (A,, A,,,) is admissible for 1 G j G m. The 
symbol E :  and  the quantity E(z ,  q )  are defined as follows: 

ifA o r i = O m o d  1 

otherwise 
(3 .3 )  

m 

E ( z , q ) =  fl ( l - z q q l -  z - I  4 ) ( l - q f l ) .  (3.4) 

For the three states a, 6, c, such that ( a ,  b )  and (b ,  c )  are admissible, the function 
H ( a ,  b, c )  takes the following form: 

(3.5a) 

H ( 0 ,  1,O) = 1 (3.56) 

(3.5c) 

n = l  

H ( a ,  b, C ) = ~ ] U -  C ]  

H ( a ,  b, C )  = H ( c ,  b, a )  = H(H, 6, C) = H ( a * ,  b*, c*).  

if a, b, c # 0, L 

Note that the X,(a, b, c ) ,  and hence P,(a 1 b, c ) ,  vanishes unless a - b = m mod 2. (The 
difference 1- 1 should be  interpreted as L - 1, etc.) 

3.2. Evaluation of X,(a, b, c ;  q )  in the limit of m large 

The quantity X m ( a ,  b, c ;  q )  introduced in (3 .2 )  is of primary importance in the study 
of the LSP. Following [ 5 ]  we call it the one-dimensional configuration sum. By 
definition it enjoys the following symmetries: 

X,(a, b , c ) = X , ( a * ,  b*,c*)=X,(H,6,?)  ( 3 . 6 ~ )  

Xm(a,  b, c ) = X m ( f i ,  b, C )  (3.66) 
where we have suppressed the argument q. The essential point is that as m goes to 
infinity the X,(a, b, c )  tends to the modular function appearing in the theta-function 
identity which we described below. 

if b, c # a, H 

For j ,  1 E $2, E l ,  E~ = *l, define an elliptic theta function by 

e ; , p ) (  Z, 9) = g E ; q / q Z - ' y +  E , Z ' Y ) .  (3.7) 
n = --iE 

y = n + , / ? /  
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It has the following quasiperiodicities: 

(3.8a) 

(3.8b) 

Let j ,  and j 2  be integers satisfying 0 s  j ,  s L-  1, O<j,<3. Theta functions 
{ O:,tc’( z, q) i j ,  E 2, 0 sj3 L }  form a base of the space that consists of functions having 
the quasiperiodicities (3.8) with E ,  = E *  = +1, 1 = L. This asserts that there exists an  
identity of the form 

~ ; : i X z ,  d ~ ; 2 : : + ’ ( z ,  d / K i + ’ ( z ,  9 )  = C cj1j2j3(q)e:,’[;”(z, d .  (3.9) 
I? 

Here the sum is taken over j ,  E 2 such that 0 s j ,  s L, j ,  + j ,  + 1 = j 3  mod 2. The latter 
condition comes from the fact that O:,73”(z exp(2 r i ) ,  q )  = (-1)’0;,7.+)(z, q )  for 1 E Z. 
The identity (3.9) in turn uniquely characterises the entry c,,,,,,(q). In particular, the 
following automorphic property is valid as a direct consequence of that for the theta 
functions: 

(3.10) 

where the conjugate modulus t is related to q through the relation 

q = exp(2ri .r)  t = exp(-2ri/.r). (3.11) 

The modular invariance (3.10) and (3.11) plays a key role in § 4 in the study of critical 
behaviours for the LSP. 

Now we give the formulae by which the one-dimensional configuration sums are 
identified with the modular functions ~ , ~ , ~ ~ , ( q ) .  As is done in [ 5 ] ,  these are verified by 
rewriting the multiple sum expression (3.2) in a series involving Gaussian polynomials 
[8] and taking the straightforward limit m +CO. In the following we fix the parity of 
m to be even. The odd-m limit can be reduced to this case: 

lim t(xm(a, b, C; q )+xm(c ,  c; 4 ) )  
m e v e n - x  

= E r  q C r , w  ( 4 1 if a, b, c # 6, L. (3.12a) L-1 Y( r,s.a 1 

lim ( X m ( O , o ,  1; q ) - X m ( O , O ,  1; q ) ) = 4 ( q ) / 4 ( q 2 )  

where the variables r and s are determined from b and c by 

2 2 

m e v e n - x  

b - c + l  
s=- + 1. 

b + c - l  r = -  

The functions ~ ( j l , j Z , j 3 )  and 4 ( q )  are defined as follows: 

(3.12b) 

(3.13) 

(3.14) 

(3.15) 

The formulae (3.12)-(3.15) along with the symmetries (3.6) yield the evaluation of the 
one-dimensional configuration sums as modular functions. 
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3.3. The results for the LSP 

Much the same as the one-dimensional configuration sum X , ( a ,  b, c), LSP itself‘ enjoys 
the symmetries 

( 3 . 1 6 ~ )  

(3 .16b) 

Below we present the result for the LSP. Thanks to the symmetries (3 .16) ,  LSP for 
general (a ,  b, c) are reduced to these cases: 

f(P(alb, c ) + P ( d j b ,  c) )  

P(  a 1 b, c)  = P ( a *  1 b*, c*) = P( d I 6, F) 

P( a I b, c )  = P( d I h, c)  if b, c # a, d. 

(3.17 b )  

The symbol E :  and the variables r, s have been respectively defined in (3 .3)  and (3 .13) .  
These results are obtained by specialising the identity (3 .9)  to z = x, q = x2 and dividing 
by the LHS. They are identified with the m + m limit of the expression (3 .2)  by using 
the formulae (3 .12)-(3.15)  and an identity 

(3 .18)  / x1/8 e,, ( F , . E > I ( ~ ,  I x 2 )  = x ( / - 2 ~ ) 2 / 8 /  E(-E,x’, E Z X  ). 

Clearly we see the condition is satisfied that the total probability should be unity. 

4. Critical behaviour 

Our model becomes critical as the parameter p tends to zero or, equivalently, x to 
unity (see (3 .1)) .  By the inversion method [7] it is straightforward to compute the free 
energy. The result coincides with that for regime 111 of the 8vsos models [ l ]  with r 
being L. An explicit expression is contained in [5] as the case N = 1. From this we 
observe that the specific heat critical exponent a has the value 

2-ff =$L. (4 .1 )  

In the following we study the critical behaviour of the LSP obtained in the previous 
section. For the purpose we first rewrite the expression (3.17) in a form that is suitable 
for examining the small-p behaviour. This is achieved by the modular transformation 
(3 .10)  and (3 .1 1) that interchanges the elliptic nomes q and t. From the relations (3 .1) ,  
(3 .11)  and q = x Z  as in (3 .17)  we readily see 

t = p 2 .  (4 .2)  

Thus the parameter t serves as an appropriate ‘deviation from criticality’ variable. We 
can immediately read off the exponents 

A = P / ( Z - a )  (4 .3)  

by counting the powers occurring in the small-t expansion of the LSP. Note that by 
the scaling hypothesis A is related to the anomalous dimension 77 through 77 = 411. 
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Besides the formula (3.10) we apply so-called conjugate modulus identities for the 
theta functions in (3.17). These are given as follows: 

where the exponent Apo-pG is 

( L +  1 ) ( L  -2) 

(4.4a) 

(4.4b) 

(4.4c) 

(4.4d) 

(4.5) 

(4.6a) 

(4.66) 

From (4.5) and  (4.6) we find that, as t tends to zero, the LSP P(aJb,  c )  becomes 
independent of (b, c )  and  converges to the critical value 

(4.7) 

Now we can readily evaluate the leading powers of t appearing in the LSP. By 

PFJ = 2 (  &,L)?/ L. 

virtue of (4.5) and ( 2 . 5 ~ )  they are given by 

&+the  lowest power of C k , k 2 h , ( t ) .  

Taking advantage of the relations (3.12)-(3.14) and the fact that 
(4.8) 

( 1 + 0 ( 0 )  if a, b, c f 6, t (4.9) ]im 
m e v e n - x  

X , ( a ,  b, c ;  t )  = tiu-b)ia-c) '4 

we f indthe lowes tpowerof  C h , k ? k , ( t )  ( 0 s  k l s L - l , 0 < k 2 < 3 , 0 s  k , s L ,  k l + k 2 =  k,+ 
1, mod 2 )  in the following form: 

h l , h ,  (4.10a) 
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Table 1 .  The exponents A p , q  in (4.106). The subscript p (respectively 9 )  runs horizontally 
(respectively vertically) from the bottom left ( p  = q = 0 ) .  

( a )  L = 3 .  

(6 )  L = 4 .  

I 4 
0 3 5 3 

( c )  L = 5 .  

5 5 
16 

45 
9 I 1 

5 80 I21 - 20 16 
80 5 

9 I 9 4 
5 5 80 

49 - 
20 80 

9 I 49 9 m % 80 
4 
I I 9 121 - 16 
5 80 23 80 5 

5 5 

5 16 4 0 - 

- - - 

- - 

- - 

0 16 z as 16 5 - 

where the quantity A k , , k 3  is defined by 

[Lk, - (L-  l)k,]' 
4L(L-1) 

O G k , G L - l  O s k , s L .  (4.10b) A k , , k 3  = A L - l - k , , L - k 3  = 

From (4.8) and (4.10) we conclude that the leading corrections to the LSP as t tends 
to zero consist of the terms proportional to t A k l . ' 3 .  The exponents A , ,  for L = 3, 4 and 
5 are listed in table 1. 

5. Summary and discussion 

In this paper we have exactly computed the local state probabilities (LSP) for a series 
of solvable interaction-round-face models. The LSP is neatly expressed in (3.17) by 
exploiting the theta function identity (3.9). Critical exponents (Y and A = p / ( 2  - a) 
are determined in (4.1) and (4.6b), (4.10b), respectively. 

The characteristic feature of our model emerges in the relevant identity (3.9). It 
contrasts with the one appearing in regime 111 of the 8vsos model viewed as the N = 1 
case of more general models in [ 5 ] .  The latter has the form (3.9) with the O ~ ~ ~ - ) , ( z ,  q )  
(respectively Oj:?( z, q ) )  replaced by Oj;c>,(z, q )  (respectively Oj3;c)(z, 9) ) .  This 
results in the difference of the exponents (4.10b) from those for the 8vsos model where 
the numerator takes the form [Lk, - ( L  - 1)kJ2 - 1 and k, and k3 are restricted to 
0 < k, < L -  1, 0 < k, < L. 

As in [ 5 ]  we can consider the lowest power of the modular function C k , k , k , ( t )  as 
-c/24, where the c is the central charge of the conformal field theory to which the 
model renormalises. From (4.10) we find that our model has c =  1 for all L s 3 .  This 
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is consistent with the fact that the L = 3 case coincides with the odd-height sector of 
the SOS models in [ 5 ]  with ( L ,  N )  = ( 6 , 2 ) ,  which is known to correspond to N = 1 
superconformal field theory with c = 1. 

Apart from the relevant theta-function identities, our model and  the YVSOS model 
may be compared by using the state variables and  the conditions on their adjacent 
pairs. Just as the former is characterised by figure 1, so is the latter by the diagram 
in figure 4. 

1 2 3 4 5 L -2  L-1 

_o__o O--J-(-(-" - - - - - - - - - - - -- - 
Figure 4. Diagram for the restricted eight-vertex SOS model. Each vertex (open  circle) 
corresponds to a local state (called 'height' in [ l ] ) .  Two states can occupy nearest-neighbour 
lattice sites if they are  connected on  the diagram. 

Figure 4 is the Dynkin diagram for the classical Lie algebra AL-,  as pointed out 
by Pasquier [9]. He proposed the models labelled by simply laced classical Lie algebras 
and  a method to get trigonometric solutions to their star-triangle equations. The 
approach is based on the Temperley-Lieb algebraic structure of local transfer matrices 
(as for the wsos model, see also [ 101). Our model originally introduced as a 'special 
S ,  generalisation' [ 113 of the wsos  model corresponds to the affine Lie algebra Dy12 
in this picture. We remark that the critical LSP PF) in (4.7) coincides with a square 
of a component of properly normalised Perron-Frobenius vector for D y i 2  in agreement 
with Pasquier's argument. We hope to discuss this point in a future publication. 
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